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Received: 24 November 2004 / Revised version: 14 March 2005 /
Published online: 11 July 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005
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Abstract. We address the construction of transition operators for electromagnetic, weak, and hadronic
reactions of relativistic few-quark systems along the spectator model. While the problem is of relevance
for all forms of relativistic quantum mechanics, we specifically adhere to the point form, since it preserves
the spectator character of the corresponding transition operators in any reference frame. The conditions
imposed on the construction of point-form spectator-model operators are discussed and their implications
are exemplified for mesonic decays of baryon resonances within a relativistic constituent-quark model.

PACS. 12.39.Ki Relativistic quark model – 13.30.Eg Hadronic decays – 21.45.+v Few-body systems

1 Introduction

Relativistic quantum mechanics (RQM) has been known
for a long time as a feasible method to treat multi-particle
systems in a Poincaré-invariant way [1]. Already in 1949
Dirac described the front, instant, and point forms of rela-
tivistic dynamics [2]. Based on a complete classification of
subgroups of the Poincaré group, Leutwyler and Stern [3]
also considered (the only) two further classes of RQM with
a maximal transitive stability group. Most of the practical
investigations in hadronic physics have been performed in
the front and instant forms. Only in recent years the point
form has attracted increasing attention. For instance, it
has been applied to calculate the π charge form factor [4],
electromagnetic baryon form factors [5,6], electroweak nu-
cleon form factors [7–10], and also widths of π and η decay
modes of N and ∆ resonances [11,12]. In all cases a point-
form spectator model (PFSM) [13] has been adopted for
the current and decay operators, respectively.

Tackling the full theory of a relativistic three-body sys-
tem, including all genuine many-body operators required
by Poincaré invariance (as well as Hermiticity and cur-
rent conservation) has not yet been possible in any of the
different forms of RQM mentioned above. Therefore, one
has resorted to simplified transition operators congruent
with an impulse approximation in a nonrelativistic theory.
However, this practice causes problems in RQM, since the
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constraints that have to be imposed on covariant rela-
tivistic operators lead to serious difficulties in the defini-
tion and application of one-body operators [14,15]. Conse-
quently, the constructions of so-called spectator-model op-
erators are afflicted with specific shortcomings that have
to be made up by additional ingredients. The latter usu-
ally turn spectator-model operators into effective many-
body operators [14,16].

The spectator-model approach in the point form has
been found to be specific, since it preserves its spectator-
model character in all reference frames [16]. This property
is connected with the fact that the generators of Lorentz
transformations form the kinematic subgroup. As a result,
the PFSM can be made manifestly covariant. Certainly,
this is a welcome behaviour for treating hadrons as rela-
tivistic few-quark systems.

The PFSM has been found to produce surprisingly
good results, especially with regard to the elastic nucleon
electroweak structure: the direct predictions by relativis-
tic constituent-quark models (CQMs) have led to quite
a consistent description of all the relevant observables in
remarkable overall agreement with existing experimental
data at low momentum transfers. In the PFSM, relativis-
tic (boost) effects definitely have big influences in all re-
spects. A similar situation has been observed in the decay
studies [11,12]. The covariant predictions differ drastically
from previous nonrelativistic or relativized results [17–20].
For the decays, however, the relativistic results systemat-
ically underestimate the experimental data and no sat-
isfactory description is reached yet (with the simplistic
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decay models applied so far). The characteristics of the
results found in the point-form approach have been seen
in quite a similar manner with the relativistic CQM by
the Bonn group [21,22] in the framework of the Bethe-
Salpeter equation [23–25].

The detailed properties of the point-form approach
using PFSM operators have not been fully understood
yet. There have been several studies to elucidate its be-
haviour, also in comparison to the spectator approxima-
tion of other forms of RQM [26–29]. Concrete calculations
with realistic CQM wave functions comparing the point
and instant forms in completely analogous spectator-
model approaches have revealed big differences between
them [6,30]. Of course, the different forms of RQM are
completely equivalent in a full calculation. Here, the ques-
tion arises which contributions are effectively covered by
the respective spectator-model approaches.

In this paper, we deal with the fundamentals of defin-
ing PFSM operators. In particular, we investigate the im-
plications of the basic symmetries of the Poincaré group
for their construction. The problem is studied for general
(elastic or inelastic) transitions. It is made clear that the
PFSM in fact represents an effective many-body transition
operator. Implications of different ways of spectator-model
constructions in the point form are demonstrated along
concrete calculations of pionic decay widths of N and ∆
resonances for the case of the Goldstone-boson-exchange
(GBE) CQM [31,32].

2 PFSM operators

The general translational-invariant amplitude between
certain incoming and outgoing baryon states, |V,M, J,Σ〉
and 〈V ′,M ′, J ′, Σ′|, is given by

〈V ′,M ′, J ′, Σ′| Ô |V,M, J,Σ〉 =

〈V ′,M ′, J ′, Σ′| Ôrd |V,M, J,Σ〉

2MV0δ
3 (MV −M ′V ′ −Q) , (1)

where Ô represents any electromagnetic, weak, or
hadronic operator, and Ôrd is its reduced part. The baryon
states are eigenstates of the four-velocity operator V̂ , the
interacting mass operator M̂ , the (total) spin operator Ĵ ,

and its z-component Σ̂ (the corresponding letters without
a hat denoting their eigenvalues). The factor in front of
the δ-function is the invariant measure ensuring the cor-
rect normalization and transformation properties of the
states. The δ-function itself expresses the overall momen-
tum conservation of the transition amplitude under the
four-momentum transfer Qµ = Pµ−P ′µ (for on-shell par-
ticles). With the appropriate basis representations of the
baryon eigenstates (see the appendix) and inclusion of the
necessary Lorentz transformations, the expression for the

transition amplitude becomes

〈V ′,M ′, J ′, Σ′| Ô |V,M, J,Σ〉 =
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The integral measures stem from the completeness rela-
tion of the velocity states (see eq. (A.10)), where the inte-
grations over the velocities have already been performed
exploiting the δ-functions in the velocity-state represen-
tations of the baryon states (eq. (A.11)). In this formula
the individual-quark momenta ki (and similarly k′

i) are
restricted by the rest-frame condition

∑
i ki = 0. The

Wigner rotations stem from the Lorentz transformations
to the boosted incoming and outgoing states, which have
nonzero total momenta P = MV and P ′ = M ′V ′, re-
spectively. The wave functions Ψ ?

M ′J ′Σ′ and ΨMJΣ de-
note the (rest-frame) velocity-state representations of the

baryon states. The reduced operator Ôrd remains sand-
wiched between the free three-quark states.

At the outset, Ôrd represents a general many-body op-
erator. With present means the complete transition ampli-
tude cannot be computed for any of the reactions in ques-
tion (electromagnetic, weak, or hadronic). Rather, one has
to resort to simplifications. Usually one first adopts a spec-
tator model where the external particle couples only to one
of the constituent quarks, while the other two are treated
as spectators. In a nonrelativistic framework this would
lead to a genuine one-body operator. However, this is not
the case in a Poincaré-invariant theory. Observing all nec-
essary constraints one arrives at effective many-body op-
erators involving all quarks. This is basically true in all
forms of RQM [14–16,33]. Here we shall discuss the per-
tinent aspects especially for the point form.

The Graz group has applied spectator-model operators
in the point form to several processes. In case of electro-
magnetic reactions, the PFSM for the current operator
Ĵ
µ
rd reads [6,7,9]
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where the matrix element of the spectator-quark current
has a formal single-particle structure,

〈p′

1, σ
′

1| Ĵµspec |p1, σ1〉 =

e1ū (p
′

1, σ
′

1)

[
f1(Q̃

2)γµ +
i

2m1
f2(Q̃

2)σµν q̃ν

]
u (p1, σ1)

(4)

with f1 and f2 being the Dirac form factors of the struck
quark with mass m1. Its spinor is expressed in terms of
the usual two-component Pauli spinor χ in the following
way:

u(p, σ) =
√
p0 +m




χ

σ·p

p0+m
χ


 . (5)

The PFSM for the axial current is defined in an anal-
ogous manner [8,9],
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a,rd |p1, p2, p3;σ1, σ2, σ3〉 =

3N 〈p′

1, σ
′

1| Âµ
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where the matrix element of the spectator-quark axial cur-
rent is taken as
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withmπ the pion mass, fπ the pion decay constant, gqA = 1
the quark axial charge, gqqπ the pion-quark coupling con-
stant, and τa the isospin matrix with Cartesian index a.

For the mesonic decays of baryon resonances a decay
model has been assumed with an elementary pseudovec-
tor coupling of the meson being directly emitted from a
single quark. The corresponding PFSM operator has the
following structure [11,34]:
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with the flavor matrix λm characterizing the particular de-
cay mode and gqqm representing the corresponding quark-
meson coupling constant.

In eqs. (4) and (7) q̃µ denotes the momentum transfer
to the struck quark in the Breit frame,

q̃µ = p
µ
1 − p′µ

1 , q̃µq̃µ = −Q̃2 . (9)

It is different from the momentum Qµ transferred to the
baryon as a whole. Only part of the total momentum is
transferred to the struck quark. Even though the external
particle (the photon or the intermediate boson) couples

only to a single quark, also the spectator quarks partici-
pate in the process since the total-momentum operator P̂
is dynamical. This makes the PFSM current an effective
many-body current. The same consideration holds for the
decay process when the meson is emitted from a single
quark. In all cases q̃µ is completely fixed by the two spec-
tator conditions and the overall momentum conservation,
and there is no arbitrariness.

The PFSM currents in eqs. (4) and (7) maintain their
spectator-model character in all reference frames [16]. This
is simply a consequence of the fact that the generators of
Lorentz transformations are kinematical in the point form.
The constructions of the electroweak currents and likewise
of the decay operator in eq. (8) themselves are Lorentz-
invariant and the spectator conditions are given by invari-
ant δ-functions. The Lorentz covariance of the spectator-
model operators does not exist in the other forms of RQM.
It is a specific property of the point form [35].

In eqs. (3), (6), and (8) there occurs a normalization
factor N for all PFSM operators. In the electromagnetic
case it is needed to reproduce the proton charge (the elec-
tric form factor at zero momentum transfer). For consis-
tency reasons the same construction should be adopted
also for the weak and hadronic operators. The Graz group
made the choice

N = NS =

(
M∑
i ωi

M ′

∑
i ω

′

i

) 3

2

. (10)

In this way, N is assumed in a Lorentz-invariant form.
This maintains the manifest covariance of the point-
form transition amplitudes in the spectator model. From
eq. (10) it is also seen that the normalization factor de-
pends on the interactions, since M and M ′ are the eigen-
values of the interacting mass operator (of the incoming
and outgoing baryons). The ratios of the interacting mass
eigenvalue to the sum of the individual-quark energies in
the denominator are chosen in a symmetric manner for
both the incoming and outgoing channels. It should be
noted that in the integration of the matrix element in
eq. (2) the sums of the individual-quark energies in N
enter as functions of the integration variables and, thus,
indirectly introduce a certain dependence on the momen-
tum transfer Q in the final results.

With the use of eq. (10) for N , accounting for charge
normalization in a Poincaré-invariant PFSM, one achieved
a very reasonable description of the elastic electroweak
nucleon structure with both the relativistic Goldstone-
boson-exchange and one-gluon-exchange CQMs [30]. In
particular, the momentum dependence of the electromag-
netic and axial form factors could be well reproduced by
the PFSM for momentum transfers up to Q2 ∼ 5 GeV2.

The choice of the normalization factor N , however,
is not unique at this point. Under the assumptions of
Poincaré invariance and charge normalization, several
other possibilities exist. This has to be considered espe-
cially in the context of inelastic processes. Here, one could
also think of choices other than the symmetric one. In the
following we investigate the origin of the normalization
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factor and study the implications of alternative forms in
case of the mesonic decays of N and ∆ resonances.

3 Spectator conditions and translational

invariance

In order to get a better insight into the nature of the nor-
malization factor N , let us now shed some more light on
the interplay of the spectator δ-functions and the overall-
momentum–conserving δ-function in the expression for
the matrix element of the transition amplitude in eq. (2).
This investigation will also further elucidate the role of q̃µ

and the proportioning of the whole momentum transfer
among the individual quarks.

In the point form we have

P̂free = M̂freeV̂free (11)

for the free system and

P̂ = M̂V̂free (12)

for the interacting system according to the Bakamjian-
Thomas construction [36]. The four-velocity remains kine-
matical upon introducing the interactions. As a conse-
quence, the momentum and mass eigenvalues of the free
and interacting systems are constrained by

Vfree =
Pfree

Mfree
=

∑
i pi∑
i ωi

=
P

M
= V . (13)

However, ∑

i

pi 6= P =MV . (14)

Remember that in the point form the mass and the four-
momentum operators are the only operators affected by
interactions. All other generators of the Poincaré algebra
remain kinematical.

Next we exploit relation (13) for the overall-momen-
tum–conserving δ-function. Since it is an invariant form,
we can consider it in any reference frame. Let us assume
we are working in the rest frame of the incoming baryon,
where

∑
i pi,in = 0. For this particular case we denote all

frame-dependent quantities with the index “in”. Then we
can write the invariant δ-function as
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Utilizing the spectator conditions, p′

2,in = p2,in and
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3,in = p3,in, this finally leads to the result
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where V0,in = 1 in this particular frame.
It is immediately evident that the momentum transfer

to the struck quark is not the same as the momentum
transfer to the baryon as a whole:

∑
i ω

′

i

M ′
Qin = q̃in 6= Qin . (17)

The difference can be expressed as

Qin − q̃in =
M ′ −∑i ωi

′

M ′
Qin =

M ′ −M ′

free

M ′
Qin . (18)

Obviously, it depends on the energies (and thus momenta)
of all three quarks and therefore makes the PFSM operator
an effective many-body operator.

It is also interesting to observe that the difference be-
tween the momentum transfers Qin and q̃in is determined
by the difference between the interacting and the free mass
operators of the outgoing baryon, i.e. the interaction re-
sponsible for its binding.

Now we notice the factor in front of the δ-function in
the last line of eq. (16). Its nature resembles the inverse
of the normalization factor N used in the definition of
the PFSM operators in eq. (10). Only it is not symmet-
ric in the mass eigenvalues of the incoming and outgoing
baryons. However, it can be utilized for defining another
normalization factor

Nin =

(
M ′

∑
i ω

′

i

)3

, (19)

which would also work in the construction of the PFSM
operators. In particular, it would guarantee the correct
proton charge normalization and fulfill all the other con-
straints of Poincaré invariance. Of course, the normaliza-
tion factor Nin produces a momentum dependence of the
results different from the one of NS.

We can repeat the above procedure with the overall-
momentum–conserving δ-function in the rest frame of the
outgoing baryon, where

∑
i p

′

i,out = 0 and the index “out”
now denotes the frame-dependent variables in this specific
frame. We obtain instead of eq. (16) the result

2MV0δ
3 (MV −M ′V ′ −Q) =

2MV0,outδ
3 (MVout −M ′V ′

out −Qout) =

2MV0,out

(∑
i ωi

M

)3
δ3
(
p′

1,out − p1,out −
∑

i ωi

M
Qout

)
.

(20)

Again, the momentum transfer to the struck quark is not
the same as the momentum transfer to the baryon as a
whole, ∑

i ωi

M
Qout = q̃out 6= Qout , (21)

where their difference now depends on the masses in the
incoming channel

Qout − q̃out =
M −∑i ωi

M
Qout =

M −Mfree

M
Qout . (22)
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Table 1. PFSM predictions of the GBE CQM [31] for π decay
widths with different choices of the normalization factor N in
eq. (8).

Decay Experiment [37] Nin NS Nout Nbare

N(1440) (227± 18)+70

−59
7.8 33 142 36004

N(1520) (66± 6)+ 9

− 5
6.1 17 37 474

N(1535) (67± 15)+28

−17
14 90 581 4123

N(1650) (109± 26)+36

− 3
3.5 29 242 1110

N(1675) (68± 8)+14

− 4
1.3 5.4 19 81

N(1700) (10± 5)+ 3

− 3
0.04 0.8 10 30

N(1710) (15± 5)+30

− 5
0.9 5.5 42 1692

∆(1232) (119± 1)+ 5

− 5
13 37 104 2990

∆(1600) (61± 26)+26

−10
0.0003 0.07 4.5 10461

∆1620) (38± 8)+ 8

− 6
1.3 11 92 422

∆(1700) (45± 15)+20

−10
0.7 2.3 5.4 29

We note that in general q̃out is different from q̃in. The
portion of momentum transfer to the struck quark changes
with the reference frame. The final result for any transition
amplitude, however, does not. It is covariant in the point
form.

The factor in front of the δ-function in the last line of
eq. (20) suggests again another normalization factor,

Nout =

(
M∑
i ωi

)3

. (23)

It would similarly be suited in the construction of PFSM
operators just like NS and Nin.

At this point all three normalization factors NS, Nin,
and Nout meet the requirements posed so far, namely,
Poincaré invariance and charge normalization. Therefore,
we have to notice an ambiguity. In the next section we
shall investigate the implications of the different possible
choices in the mesonic decays of N and ∆ resonances,
where we have different particles in the incoming and out-
going channels.

4 N dependence of decay widths

Let us assume for the normalization factor N the general
form

N (y) =

(
M∑
i ωi

)3y (
M ′

∑
i ω

′

i

)3(1−y)

. (24)

with 0 ≤ y ≤ 1. It contains all of the three forms, NS,
Nin, and Nout, discussed in the previous section and it
also meets all the requirements posed (Poincaré invariance
and charge normalization). We emphasize that the tran-
sition amplitudes are covariant for every particular fixed
y. However, the results will vary for different values of the
asymmetry parameter y .

We studied the decay widths of N and ∆ resonances
with the PFSM decay operator of eq. (8). The actual com-
putations were performed in the rest frame of the decaying
resonance. We emphasize, however, that the PFSM results
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Fig. 1. Dependence of the π decay widths on the asymmetry
parameter y in the normalization factor of eq. (24) for selected
N resonances.
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Fig. 2. Dependence of the π decay widths on the asymmetry
parameter y in the normalization factor of eq. (24) for selected
∆ resonances.

are frame independent. In table 1 we first demonstrate the
dissimilarity of the predictions in case of the GBE CQM
for either one of the choices NS, Nin, and Nout. It is seen
that the normalization factor Nin yields the smallest val-
ues of the decay widths in all cases. Contrary to that,
Nout always produces the biggest predictions. The sym-
metric NS is intermediate between the two. In the last
column of table 1 we have also quoted the results that
would be obtained if N was left out completely; we de-
noted this case by Nbare. It does not meet the requirement
of (proton) charge normalization in the electroweak sec-
tor. Obviously, the corresponding results are completely
unreasonable also here for the decay widths.

When considering the different predictions in table 1
we notice that the normalization factor Nout leads to an
overestimation of the experimental data in several cases.
This may be considered as a drawback, and it is avoided
completely by NS. The corresponding results always re-
main smaller than the experimental data or do not exceed
them. We consider this to be a reasonable feature, since a
more elaborate decay model than the one used here would
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Table 2. Dependence of the π decay widths on the asymmetry parameter y in the normalization factor of eq. (24).

y N
(1
4
4
0
)

N
(1
5
2
0
)

N
(1
5
3
5
)

N
(1
6
5
0
)

N
(1
6
7
5
)

N
(1
7
0
0
)

N
(1
7
1
0
)

∆
(1
2
3
2
)

∆
(1
6
0
0
)

∆
(1
6
2
0
)

∆
(1
7
0
0
)

0.0 7.8 6.1 14 3.5 1.3 0.04 0.87 13 0.0003 1.3 0.72
0.2 14 9.3 30 8.1 2.3 0.14 1.8 20 0.001 3.0 1.2
0.4 25 14 62 19 4.1 0.44 3.7 30 0.02 7.1 1.9
0.5 33 17 90 29 5.4 0.75 5.5 37 0.07 11 2.3
0.6 44 20 131 44 7.0 1.3 8.1 45 0.19 17 2.9
0.8 80 28 275 102 12 3.7 18 69 0.99 39 4.1
1.0 142 37 581 242 19 10 42 104 4.5 92 5.4

Exp. 227 66 67 109 68 10 15 119 61 38 45

Table 3. Dependence of the π decay widths on the exponent x in the normalization factor of eq. (25).

x N
(1
4
4
0
)

N
(1
5
2
0
)

N
(1
5
3
5
)

N
(1
6
5
0
)

N
(1
6
7
5
)

N
(1
7
0
0
)

N
(1
7
1
0
)

∆
(1
2
3
2
)

∆
(1
6
0
0
)

∆
(1
6
2
0
)

∆
(1
7
0
0
)

0.0 36004 474 4123 1110 81 30 1692 2990 10461 422 29
1.0 1143 132 1078 256 28 7.6 64 472 946 97 11
1.5 145 74 554 140 18 4.1 7.4 227 282 53 6.9
2.0 2.5 44 293 80 12 2.3 0.002 117 72 30 4.7
2.5 12 27 160 47 7.8 1.3 2.4 64 12 18 3.3
3.0 33 17 90 29 5.4 0.75 5.5 37 0.07 11 2.3
3.5 44 11 52 18 3.8 0.44 7.6 22 3.0 6.7 1.7
4.0 47 7.4 31 11 2.8 0.27 8.8 13 8.9 4.2 1.3
6.0 30 1.9 4.8 2.2 0.94 0.04 8.5 2.5 22 0.79 0.48
7.0 22 1.1 2.1 1.1 0.61 0.01 7.7 1.2 22 0.38 0.32
9.0 12 0.47 0.50 0.30 0.31 0.001 6.3 0.36 21 0.09 0.17

Exp. 227 66 67 109 68 10 15 119 61 38 45

tentatively bring in additional contributions that are ex-
pected to make the predictions bigger and thus get them
into closer agreement with the data. The results with Nin

are always much too small as compared to experiment.

The detailed dependence of the results on the asym-
metry parameter y in eq. (24) is demonstrated in table 2.
A smooth transition of the theoretical values from y = 0
(corresponding to Nin) via y = 0.5 (corresponding to NS)
to y = 1 (corresponding to Nout) is observed for all reso-
nance decays. We have exemplified this behaviour for some
of the N and ∆ resonances in figs. 1 and 2, respectively.
There is practically an exponential rise of the theoretical
values when y varies from zero to unity.

From these studies one learns that the normalization
factors modify the dependence on the recoil, i.e. on the
Q-dependence in eq. (8). It is noteworthy that the sym-
metric choice NS, which was originally adopted as the op-
timal one in the electroweak case, also leads to the most
reasonable results in the hadronic decays considered here
(in the sense that the experimental data are not overesti-
mated).

That the normalization factor N in eqs. (3), (6), and
(8) effectively introduces a momentum cut-off can even

better be seen if we investigate the form

N (x) =

(
M∑
i ωi

M ′

∑
i ω

′

i

) x

2

(25)

with an arbitrary exponent x. It still represents a
Poincaré-invariant construction but it does not guaran-
tee for the proper charge normalization unless x = 3. It
is instructive to look at the predictions for decay widths
as a function of the exponent x in table 3. Starting out
from the (unreasonable) bare case, the theoretical results
evolve smoothly with increasing exponent x. For x = 3
we recover the predictions for NS in table 1. For certain
resonances the decay widths have a minimum. This is ex-
emplified in figs. 3 and 4. We notice that the minima occur
just for the resonances N(1440), N(1710), and ∆(1600),
which are known as the so-called structure-dependent res-
onances [38]. They are the radial excitations of the N and
∆ ground states, respectively, with a corresponding nodal
behaviour in their wave functions. These characteristics
are quite distinct from the other resonances, which show
a monotonous dependence on the exponent x.

If we assume again the criterion that the theoretical
predictions for decay widths with the decay operator (8)
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Fig. 3. Dependence of the π decay widths on the exponent x of
the normalization factor in eq. (25) for selected N resonances.
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Fig. 4. Dependence of the π decay widths on the exponent x of
the normalization factor in eq. (25) for selected ∆ resonances.

should not exceed the experimental data, we find as the
optimal case the one with x = 3. In this way we are led
back to the assumption of the symmetric normalization
factor in eq. (10), which also meets all the theoretical re-
quirements imposed.

5 Summary

We have investigated the spectator-model construction of
transition operators in the point form. Based on the ex-
plicit forms of the current operators for electromagnetic as
well as weak reactions and the decay operator for baryon
resonances we have investigated the specific ingredients in
the PFSM. We have made transparent the effective many-
body nature of the spectator-model operator in the point
form. In particular, we have explained the distribution of
the total momentum transfer Q among the constituent
quarks in a baryon through the Lorentz boosts under the
constraint of translational invariance. As a result, the mo-
mentum q̃ transferred to the struck quark is only a part of
the total Q. Furthermore, we have devoted our attention
to the definition of the normalization factor N occurring
in the PFSM operators. We noticed that several choices

are possible even under the constraints of charge normal-
ization (in the electroweak case) and Poincaré invariance.
However, the final results depend on the particular choice
made. Therefore, in any PFSM calculation it should be
specified which normalization factor has been adopted.

The influence of different normalization factors has
been investigated with regard to pionic decays of N and
∆ resonances. In the concrete calculations we have em-
ployed the wave functions as produced by the GBE CQM.
Qualitatively the results would be quite similar with other
realistic baryon wave functions, e.g., the ones from a one-
gluon-exchange CQM (see ref. [12], where the influences of
different dynamics on decay widths have been discussed).
We have demonstrated the modification of the momentum
dependence that is introduced by different choices of N .
Upon comparing the theoretical predictions with experi-
ment we have found a preference for the symmetric choice
NS in the PFSM decay operator adopted here. This obser-
vation is congruent with the one made in the electroweak
sector. With regard to the pionic decays, however, even the
calculation with NS using the wave functions of the GBE
CQM and the present PFSM decay operator does not pro-
duce a satisfactory description of the experimental data.

While our investigations have been made specifically
for the point form, most of the questions addressed
here are also relevant for the other forms of RQM in
case spectator operators are considered. Similar prob-
lems occur in the instant and front forms if the neces-
sary invariance constraints are imposed (cf., for instance,
refs. [14,16,33,39–41]). In some respects, even additional
complications arise connected with the fact that Lorentz
transformations are no longer kinematical. For example, in
the instant form the spectator-model character of any op-
erator constructed in one frame will not be maintained un-
der Lorentz transformations. In any other reference frame
specific genuine many-body operators will be generated.

Here, and in previous works, we have seen certain ad-
vantages of the point-form approach in the treatment of
relativistic few-body problems. The PFSM construction
definitely includes effective contributions from many-body
operators. Their sources are twofold. They stem from the
sharing of the total momentum transfer to the individual
quarks and from the necessary normalization factor N ,
which involves the interacting mass operators. The dif-
ferent possible choices of N constitute a quantitatively
significant ambiguity. It is important to take these pecu-
liarities of the PFSM into account before going to include
explicit many-body operators.
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thank the INFN and the Physics Department of the University
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Appendix A. States and wave functions in

point-form RQM

In RQM baryon states are expressed as eigenstates
|P, J,Σ〉 of the four-momentum P̂ , total spin Ĵ , and its

z-component Σ̂ (the letters without hat denoting the cor-
responding eigenvalues). Their covariant normalization is

〈P ′, J ′, Σ′|P, J,Σ〉 = 2P0δ
3 (P − P ′) δJJ ′δΣΣ′ . (A.1)

The baryon states can equivalently be expressed by
|V,M, J,Σ〉, i.e. as eigenstates of the four-velocity opera-

tor V̂ , the (interacting) mass operator M̂ as well as Ĵ and

Σ̂. For the eigenvalues of the four-vector V one always has
the constraint V µVµ = 1. The covariant normalization of
the baryon states |V,M, J,Σ〉 reads

〈V ′,M ′, J ′, Σ′|V,M, J,Σ〉 =
2MV0δ

3 (MV −M ′V ′) δJJ ′δΣΣ′ . (A.2)

For the baryon wave functions, the eigenstates can be
expressed in different basis representations. One basis is
provided by the free three-particle states, which are tensor
products of one-particle states. Their covariant normaliza-
tion is

〈p′

1, p
′

2, p
′

3;σ
′

1σ
′

2, σ
′

3|p1, p2, p3;σ1σ2, σ3〉 =
2p10δ

3 (p1 − p′

1) 2p20δ
3 (p2 − p′

2) 2p30δ
3 (p3 − p′

3)

× δσ1σ
′

1
δσ2σ

′

2
δσ3σ

′

3
, (A.3)

and their completeness relation reads

1 =
∑

σ1,σ2,σ3

∫
d3p1

2p10

d3p2

2p20

d3p3

2p30

× |p1, p2, p3;σ1, σ2, σ3〉 〈p1, p2, p3;σ1, σ2, σ3| . (A.4)

For on-shell particles out of the 12 momentum compo-
nents only 9 remain as integration variables. In the rest
frame we write these states as |k1, k2, k3;µ1, µ2, µ3〉, where∑

i ki = 0.
Another basis is provided by the so-called velocity

states (of the free system). They are advantageous in
practical calculations and have already been used before,
among others in refs. [42,43], with slightly different nor-
malizations. We define them by

|v;k1,k2,k3;µ1, µ2, µ3〉 = UB(v) |k1, k2, k3;µ1, µ2, µ3〉 =
∑

σ1,σ2,σ3

3∏

i=1

D
1

2

σiµi
[RW(ki, B(v))] |p1, p2, p3;σ1, σ2, σ3〉 .

(A.5)

Here B (v), with unitary representation UB(v), is a
boost with four-velocity v on the three-body states
|k1, k2, k3;µ1, µ2, µ3〉 in the rest frame. The relation be-
tween pi and ki is thus given by

pi = B (v) ki , (A.6)

and the four-velocity is expressed by

v =

∑
i pi

Mfree
=

∑
i pi∑
i ωi

, (A.7)

whereMfree is the invariant free mass and ωi =
√

k2
i +m2

i

are the energies of the individual quarks with mass mi.
In case of the velocity states one has v and two of the
three quark momenta, k2 and k3, say, as the 9 independent
variables. The transformation from the free three-body
states to the free velocity states is given by the Jacobi
determinant

J
{
∂ (p1,p2,p3)

∂ (v,k2,k3)

}
=

2p102p202p30 (ω1 + ω2 + ω3)
3

2ω12ω22ω3v0
.

(A.8)
Due to eqs. (A.3) and (A.4) it implies the following nor-
malization:

〈v;k1,k2,k3;µ1, µ2, µ3|v′;k′

1,k
′

2,k
′

3;µ
′

1, µ
′

2, µ
′

3〉 =
2ω12ω22ω3

(ω1 + ω2 + ω3)
3 δµ1µ

′

1
δµ2µ

′

2
δµ3µ

′

3

× v0δ3 (v − v′) δ3 (k2 − k′

2) δ
3 (k3 − k′

3) (A.9)

and completeness relation

1 =
∑

µ1µ2µ3

∫
d3v

v0

d3k2

2ω2

d3k3

2ω3

(ω1 + ω2 + ω3)
3

2ω1

× |v;k1,k2,k3;µ1, µ2, µ3〉 〈v;k1,k2,k3;µ1, µ2, µ3|
(A.10)

for the velocity states.
The baryon wave function in any reference frame is

given by the velocity-state representation of the eigen-
states |V,M, J,Σ〉,

〈v;k1,k2,k3;µ1, µ2, µ3|V,M, J,Σ〉 =
√
2

M
v0δ

3 (v − V )

×
√

2ω12ω22ω3

(ω1 + ω2 + ω3)
3ΨMJΣ (k1,k2,k3;µ1, µ2, µ3) .

(A.11)

The wave functions ΨMJΣ (k1,k2,k3;µ1, µ2, µ3) are the
rest-frame wave functions and they are normalized to
unity,

∑

µ1µ2µ3

∫
d3k2d

3k3Ψ
?
M ′J ′Σ′ (k1,k2,k3;µ1, µ2, µ3)

×ΨMJΣ (k1,k2,k3;µ1, µ2, µ3) = δMM ′δJJ ′δΣΣ′

(A.12)

in concordance with the normalization conditions (A.2)
and (A.9). The advantage of this velocity-state represen-
tation is that the motion of the system as a whole can
always be separated from the internal motion represented
in ΨMJΣ .
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